Introduction	Method and Goal	Example	Conclusion

Matroids and Hyperplane Arrangements Part Two

Christin Bibby, Ian Williams, Dr. Michael Falk

NASA Space Grant Symposium

April 18, 2009

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

• Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.

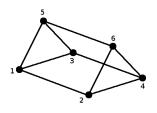
(日)

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

• Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.



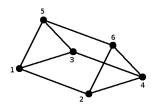
Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion
•0			
Introduction			

• Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.

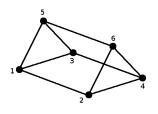
► A base of X is a maximal independent subset of X.



Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
0			
Introduction			

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.
- A base of X is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.

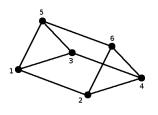


NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction ●○	Method and Goal	Example 000	Conclusion
Introduction			

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.
- ► A base of X is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.
- ▶ The **rank of X** is the size of a base of X.

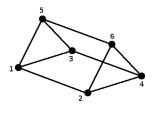


Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.
- ► A base of X is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.
- The **rank of X** is the size of a base of X.
- The closure of X is

 $cl(X) = \{H \in \mathcal{A} : \operatorname{Rank}(X \cup H) = \operatorname{Rank}(X)\}.$



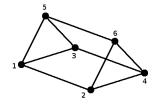
Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

- Let \mathcal{A} be a hyperplane arrangement in \mathbb{C}^4 and $X \subseteq \mathcal{A}$.
- ► A base of X is a maximal independent subset of X.
- Theorem: Any two bases of X have the same size.
- ▶ The rank of X is the size of a base of X.
- The closure of X is

 $cl(X) = \{H \in \mathcal{A} : \operatorname{Rank}(X \cup H) = \operatorname{Rank}(X)\}.$

• X is a flat if X = cl(X).



Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

A rank-3 flat X is irreducible if Rank(X − H) = Rank(X) = 3 for every H ∈ X. Otherwise, X is reducible.

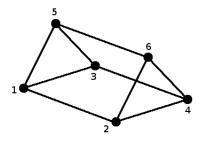
니**미 》 《 랜 》 《 분 》 《 분 》 분 《 《) Q (**3

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
00			
Introduction			

A rank-3 flat X is irreducible if Rank(X − H) = Rank(X) = 3 for every H ∈ X. Otherwise, X is reducible.

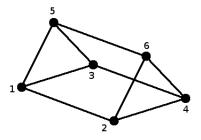


NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction ○●	Method and Goal	Example	Conclusion
Introduction			

- A rank-3 flat X is irreducible if Rank(X − H) = Rank(X) = 3 for every H ∈ X. Otherwise, X is reducible.
- An arrangement is **2-generic** if for every flat X with $Rank(X) \le 2$, Rank(X) = |X|.



Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

• Consider an 2-generic arrangement of hyperplanes \mathcal{A} in \mathbb{C}^4 .

《中》《聞》《臣》《臣》 臣 のの(

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion
	●000		
Method and Goal			

- Consider an 2-generic arrangement of hyperplanes \mathcal{A} in \mathbb{C}^4 .
- ► The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } ab = 0 \text{ and } b \text{ is not a multiple of } a\}.$

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

- ▶ Consider an 2-generic arrangement of hyperplanes A in C⁴.
- The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } ab = 0 \text{ and } b \text{ is not a multiple of } a\}.$

We are looking for elements in the subset

$$\mathcal{M}^2 = \{ a \in A^1 | \exists \ bc \in A^2 \text{ with } abc = 0 \\ \text{and } bc \text{ is not a multiple of } a \} \subseteq \mathcal{R}^2.$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

- ▶ Consider an 2-generic arrangement of hyperplanes A in C⁴.
- The degree-two resonance variety is

 $\mathcal{R}^2 = \{a \in A^1 | \exists b \in A^2 \text{ with } ab = 0 \text{ and } b \text{ is not a multiple of } a\}.$

We are looking for elements in the subset

$$\mathcal{M}^2 = \{a \in \mathcal{A}^1 | \exists \ bc \in \mathcal{A}^2 \text{ with } abc = 0$$

and bc is not a multiple of $a\} \subseteq \mathcal{R}^2$.

We do this by finding a matrix Λ, whose rows correspond to the hyperplanes in A, that satisfies certain properties so that the columns of Λ correspond to elements in M².

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

Let 𝔅 = {X₁,..., X_n} be a chosen set of irreducible rank-3 flats of 𝔅, called the **base locus**.

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
00	0000	000	00
Method and Goal			

- Let 𝔅 = {X₁,...,X_n} be a chosen set of irreducible rank-3 flats of 𝔅, called the **base locus**.
- ▶ Then build the adjacency matrix $J_{\mathfrak{X}}$, where the entry $m_{ij} = 1$ if $j \in X_i$ and $m_{ij} = 0$ otherwise.

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

- Let 𝔅 = {X₁,...,X_n} be a chosen set of irreducible rank-3 flats of 𝔅, called the **base locus**.
- ▶ Then build the adjacency matrix $J_{\mathfrak{X}}$, where the entry $m_{ij} = 1$ if $j \in X_i$ and $m_{ij} = 0$ otherwise.

For the prism example, let $\mathfrak{X} = \{1234, 1256, 3456\}$. Then

$$J_{\mathfrak{X}} = \left[egin{array}{cccccccc} 1 & 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 & 1 & 1 \end{array}
ight]$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- This guarantees that Rank(Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.

Introduction	Method and Goal ○○●○	Example	Conclusion
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_x), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- This guarantees that Rank(Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- For X ⊆ A, let Λ(X) be the submatrix of Λ gotten from the rows of Λ that correspond to hyperplanes in X.

Introduction	Method and Goal ○○●○	Example	Conclusion
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- This guarantees that Rank(Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- For X ⊆ A, let Λ(X) be the submatrix of Λ gotten from the rows of Λ that correspond to hyperplanes in X.
- $X \subseteq \mathcal{A}$ is a **2-clique** if $\operatorname{Rank}(\Lambda(X)) = 2$.

Introduction	Method and Goal ○○●○	Example	Conclusion
Method and Goal			

- Choose 3 linearly independent vectors in ker(J_X), Λ₁, Λ₂, Λ₃, and let Λ = [Λ₁|Λ₂|Λ₃].
- This guarantees that Rank(Λ) = 3 and J_XΛ = 0, which are two of the properties we desire.
- For X ⊆ A, let Λ(X) be the submatrix of Λ gotten from the rows of Λ that correspond to hyperplanes in X.
- $X \subseteq \mathcal{A}$ is a **2-clique** if $\operatorname{Rank}(\Lambda(X)) = 2$.
- For the third property, we check that Γ, the set of maximal 2-cliques, satisfies the neighborly condition.

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in A.

(1) If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique.

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in A.

- (1) If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique.
- (2) If X is reducible, then X is contained in a 2-clique.

Introduction	Method and Goal	Example	Conclusion
	0000		
Method and Goal			

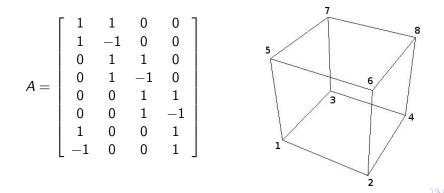
We say that Γ is **neighborly** if it satisfies the following properties for each rank-3 flat X in A.

- (1) If X is irreducible and $X \notin \mathfrak{X}$, then X is contained in a 2-clique.
- (2) If X is reducible, then X is contained in a 2-clique.
- (2') Generalization of condition (2). If $X \{i\}$ is contained in a 2-clique for some $i \in X$, then so is X.

Introduction	Method and Goal	Example	Conclusion
		000	
Cube			

Consider the hyperplane arrangement

$$\mathcal{A} = \{x \pm y, y \pm z, z \pm w, w \pm x\}.$$



Christin Bibby, Ian Williams, Dr. Michael Falk

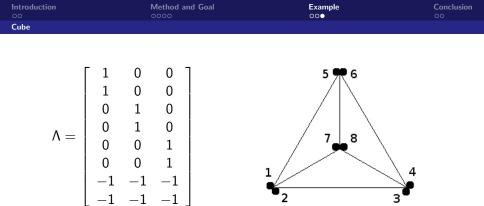
	od and Goal Examp	
00 0000	0.00	00
Cube		

 $\mathfrak{X} = \{1357, 2358, 1458, 2457, 1368, 2367, 1467, 2468\}$

$$J_{\mathfrak{X}} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements



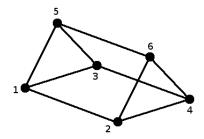
This tells us that in the OS Algebra for this arrangement,

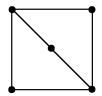
$$\underbrace{[(e_1 + e_2) - (e_7 + e_8)]}_{a} \underbrace{[(e_3 + e_4) - (e_7 + e_8)]}_{b} \underbrace{[(e_5 + e_6) - (e_7 + e_8)]}_{c} = 0$$

Christin Bibby, Ian Williams, Dr. Michael Falk

Introduction	Method and Goal	Example	Conclusion
			00
Conclusion			

Conjecture





A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Introduction	Method and Goal	Example	Conclusion ○●
Conclusion			

Sources

- Arrangements of Hyperplanes by Peter Orlik and Hiroaki Terao
- Matroid Theory by James Oxley
- Determining Resonance Varieties of Hyperplane Arrangements by Andres Perez
- The brain of Dr. Michael Falk.