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Introduction

I Let A be a hyperplane arrangement in C4 and X ⊆ A.

I A base of X is a maximal independent subset of X .

I Theorem: Any two bases of X have the same size.

I The rank of X is the size of a base of X .

I The closure of X is

cl(X ) = {H ∈ A : Rank(X ∪ H) = Rank(X )}.

I X is a flat if X = cl(X ).
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Introduction

I A rank-3 flat X is irreducible if Rank(X −H) = Rank(X ) = 3
for every H ∈ X . Otherwise, X is reducible.

I An arrangement is 2-generic if for every flat X with
Rank(X ) ≤ 2, Rank(X ) = |X |.
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Method and Goal

I Consider an 2-generic arrangement of hyperplanes A in C4.

I The degree-two resonance variety is

R2 = {a ∈ A1|∃ b ∈ A2 with ab = 0 and b is not a multiple of a}.

I We are looking for elements in the subset

M2 = {a ∈ A1|∃ bc ∈ A2 with abc = 0

and bc is not a multiple of a} ⊆ R2.

I We do this by finding a matrix Λ, whose rows correspond to
the hyperplanes in A, that satisfies certain properties so that
the columns of Λ correspond to elements in M2.
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Method and Goal

I Let X = {X1, . . . ,Xn} be a chosen set of irreducible rank-3
flats of A, called the base locus.

I Then build the adjacency matrix JX, where the entry mij = 1
if j ∈ Xi and mij = 0 otherwise.

For the prism example, let X = {1234, 1256, 3456}. Then

JX =

 1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 1 1 1


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Method and Goal

I Choose 3 linearly independent vectors in ker(JX), Λ1, Λ2, Λ3,
and let Λ = [Λ1|Λ2|Λ3].

I This guarantees that Rank(Λ) = 3 and JXΛ = 0, which are
two of the properties we desire.

I For X ⊆ A, let Λ(X ) be the submatrix of Λ gotten from the
rows of Λ that correspond to hyperplanes in X .

I X ⊆ A is a 2-clique if Rank(Λ(X )) = 2.

I For the third property, we check that Γ, the set of maximal
2-cliques, satisfies the neighborly condition.
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Method and Goal

We say that Γ is neighborly if it satisfies the following properties
for each rank-3 flat X in A.

(1) If X is irreducible and X /∈ X, then X is contained in a
2-clique.

(2) If X is reducible, then X is contained in a 2-clique.

(2’) Generalization of condition (2). If X − {i} is contained in a
2-clique for some i ∈ X , then so is X .

Christin Bibby, Ian Williams, Dr. Michael Falk NASA Space Grant Symposium

Matroids and Hyperplane Arrangements



Introduction Method and Goal Example Conclusion

Method and Goal

We say that Γ is neighborly if it satisfies the following properties
for each rank-3 flat X in A.

(1) If X is irreducible and X /∈ X, then X is contained in a
2-clique.

(2) If X is reducible, then X is contained in a 2-clique.

(2’) Generalization of condition (2). If X − {i} is contained in a
2-clique for some i ∈ X , then so is X .

Christin Bibby, Ian Williams, Dr. Michael Falk NASA Space Grant Symposium

Matroids and Hyperplane Arrangements



Introduction Method and Goal Example Conclusion

Method and Goal

We say that Γ is neighborly if it satisfies the following properties
for each rank-3 flat X in A.

(1) If X is irreducible and X /∈ X, then X is contained in a
2-clique.

(2) If X is reducible, then X is contained in a 2-clique.

(2’) Generalization of condition (2). If X − {i} is contained in a
2-clique for some i ∈ X , then so is X .

Christin Bibby, Ian Williams, Dr. Michael Falk NASA Space Grant Symposium

Matroids and Hyperplane Arrangements



Introduction Method and Goal Example Conclusion

Cube

Consider the hyperplane arrangement

A = {x ± y , y ± z , z ± w , w ± x}.

A =



1 1 0 0
1 −1 0 0
0 1 1 0
0 1 −1 0
0 0 1 1
0 0 1 −1
1 0 0 1
−1 0 0 1


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Cube

X = {1357, 2358, 1458, 2457, 1368, 2367, 1467, 2468}

JX =



1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0
1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1


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Cube

Λ =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
−1 −1 −1
−1 −1 −1


This tells us that in the OS Algebra for this arrangement,

[(e1 + e2)− (e7 + e8)]︸ ︷︷ ︸
a

[(e3 + e4)− (e7 + e8)]︸ ︷︷ ︸
b

[(e5 + e6)− (e7 + e8)]︸ ︷︷ ︸
c

= 0
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Conjecture
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Sources

I Arrangements of Hyperplanes by Peter Orlik and Hiroaki
Terao

I Matroid Theory by James Oxley

I Determining Resonance Varieties of Hyperplane Arrangements
by Andres Perez

I The brain of Dr. Michael Falk.
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